Effects of oxidative stress on endothelial function after a high-fat meal

Author:

TSAI Wei-Chuan1,LI Yi-Heng1,LIN Chih-Chan1,CHAO Ting-Hsing1,CHEN Jyh-Hong1

Affiliation:

1. Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Medical Center, Tainan, Taiwan

Abstract

Postprandial lipaemia is known to cause endothelial dysfunction, but its underlying mechanism is still under debate. The present study was undertaken to investigate the effects of postprandial lipaemia on endothelial dysfunction and oxidative stress. We measured plasma glutathione peroxidase (GSH-Px), an antioxidant enzyme, and the urinary excretion of 8-epi-prostaglandin F2α (8-PGF2α), a free radical-catalysed product from the oxidative modification of arachidonic acid, in 16 healthy subjects (mean age, 30±5 years) without major coronary risk factors. Plasma high-sensitive C-reactive protein, soluble intercellular cell-adhesion molecule-1 and vascular cell-adhesion molecule-1 were also measured. High-resolution ultrasound was used to assess the flow-mediated vasodilatation (FMD) of the brachial artery. Blood and urine samples were collected before and 2, 4 and 6 h after a standard high-fat meal (3677 J, containing 50 g of fat). Serum triacylglycerol (triglyceride) increased and FMD decreased significantly after a high-fat meal. Plasma GSH-Px significantly decreased from 27.2±12.3 µg/ml to 25.7±11.8 µg/ml (P=0.022) 2 h after the meal, and urinary excretion of 8-PGF2α significantly increased from 1286±1401 pg/mg of creatinine to 2197±1343 pg/mg of creatinine (P=0.014) at 4 h after the meal. However, there were no significant changes in the levels of high-sensitive C-reactive protein and adhesion molecules after a high-fat meal. In conclusion, endothelial dysfunction was observed after consuming a high-fat meal and is associated with augmented oxidative stress manifested by the depletion of serum antioxidant enzymes and increased excretion of oxidative modification products.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3