Affiliation:
1. Department of Orthopedic Surgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
Abstract
Abstract
Background: Rheumatoid arthritis (RA) and osteoarthritis (OA) are two major types of joint diseases. The present study aimed to identify hub genes involved in the pathogenesis and further explore the potential treatment targets of RA and OA.
Methods: The gene expression profile of GSE12021 was downloaded from Gene Expression Omnibus (GEO). Total 31 samples (12 RA, 10 OA and 9 NC samples) were used. The differentially expressed genes (DEGs) in RA versus NC, OA versus NC and RA versus OA groups were screened using limma package. We also verified the DEGs in GSE55235 and GSE100786. Functional annotation and protein–protein interaction (PPI) network construction of OA- and RA-specific DEGs were performed. Finally, the candidate small molecules as potential drugs to treat RA and OA were predicted in CMap database.
Results: 165 up-regulated and 163 down-regulated DEGs between RA and NC samples, 73 up-regulated and 293 down-regulated DEGs between OA and NC samples, 92 up-regulated and 98 down-regulated DEGs between RA and OA samples were identified. Immune response and TNF signaling pathway were significantly enriched pathways for RA- and OA-specific DEGs, respectively. The hub genes were mainly associated with ‘Primary immunodeficiency’ (RA vs. NC group), ‘Ribosome’ (OA vs. NC group), and ‘Chemokine signaling pathway’ (RA vs. OA group). Arecoline and Cefamandole were the most promising small molecule to reverse the RA and OA gene expression.
Conclusion: Our findings suggest new insights into the underlying pathogenesis of RA and OA, which may improve the diagnosis and treatment of these intractable chronic diseases.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献