Estradiol and progesterone affect enzymes but not glucose consumption in a mink uterine cell line (GMMe)

Author:

Holmlund Hayden1,Marín-Hernández Álvaro2,Chase Jennifer R.1ORCID

Affiliation:

1. Northwest Nazarene University, 623 S. University Blvd, Nampa, ID 83686, U.S.A.

2. Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, México

Abstract

Abstract Cells lining the uterus are responsible for storage and secretion of carbohydrates to support early embryonic development. Histotrophic secretions contain glycogen and glycolytic products such as lactate and pyruvate. Insufficient carbohydrate storage as glycogen has been correlated with infertility in women. While it is clear that changes in estrogen (17-β-estradiol (E2)) and progesterone (P4) in vivo affect the distribution of glucose in the uterine cells and secretions, the biochemical mechanism(s) by which they affect this crucial allocation is not well understood. Furthermore, in cultured uterine cells, neither E2 nor P4 affect glycogen storage without insulin present. We hypothesized that P4 and E2 alone affect the activity of glycolytic enzymes, glucose and glycolytic flux to increase glycogen storage (E2) and catabolism (P4) and increase pyruvate and lactate levels in culture. We measured the rate of glucose uptake and glycolysis in a mink immortalized epithelial cell line (GMMe) after 24-h exposure to 10 μM P4 and 10 nM E2 (pharmacologic levels) at 5 mM glucose and determined the kinetic parameters (Vmax, Km) of all enzymes. While the activities of many glycolytic enzymes in GMMe cells were shown to be decreased by E2 treatment, in contrast, glucose uptake, glycolytic flux and metabolites levels were not affected by the treatments. The cellular rationale for P4- and E2-induced decreases in the activity of enzymes may be to prime the system for other regulators such as insulin. In vivo, E2 and P4 may be necessary but not sufficient signals for uterine cycle carbohydrate allocation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3