Insulin action and binding in isolated hepatocytes from fasted, streptozotocin-diabetic, and older, spontaneously obese rats

Author:

Cech James M.1,Freeman Richard B.1,Caro Jose F.1,Amatruda John M.1

Affiliation:

1. Endocrine–Metabolism Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, U.S.A.

Abstract

Insulin binding and basal and insulin-stimulated uptake of α-aminoisobutyric acid were measured in isolated hepatocytes from young control rats as well as from older spontaneously obese, 72h-starved, and nonketotic streptozotocin-diabetic rats. Isolated hepatocytes from older spontaneously obese rats are similar to those from younger smaller rats in size, maximal insulin responsiveness, the dose–response relationship for insulin-stimulated aminoisobutyrate uptake, and the number and affinity of insulin receptors. Hepatocytes from 72h-fasted rats have similar numbers of insulin receptors per cell as cells from young control animals, but are significantly smaller, have an enhanced basal rate of aminoisobutyrate uptake, and are insulin resistant with regard to maximal insulin-stimulated uptake of aminoisobutyrate at 0.1mm-aminoisobutyrate. Because of the decreased maximal response to insulin, the concentration of insulin that elicits a half-maximal response of aminoisobutyrate uptake is decreased. Hepatocytes from diabetic animals, like those from starved rats, have significantly greater basal rates of aminoisobutyrate uptake; whereas the maximal absolute insulin response is the same as control cells, the percentage response is smaller. These cells bind significantly more insulin than do control cells. The increase in insulin binding is reflected in a shift to the left of the dose–response curve for insulin-stimulated uptake of aminoisobutyrate. These studies indicate that there is no insulin resistance with regard to uptake of aminoisobutyrate in hepatocytes from older obese rats. Furthermore, the insulin resistance observed in hepatocytes from starved rats occurs despite an increase in the number of receptors per unit surface area and cannot be explained by alterations in the interaction between insulin and its receptor. The enhanced insulin binding per unit surface area, however, is reflected in the shift to the left of the dose–response curve for insulin. This is also true for hepatocytes from diabetic animals, in which insulin binding per cell is increased.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3