Affiliation:
1. Department of Biochemistry, Royal Free Hospital School of Medicine, University of London, Rowland Hill Street, London NW3 2PF, U.K.
Abstract
This study reports an unexpected effect of calmidazolium on steroidogenesis. In contrast with previous work, which established that calmidazolium inhibits hormone-stimulated testosterone production in rat Leydig cells, the present study demonstrates that this compound is a potent stimulator of steroidogenesis when added by itself; this stimulation (approx. 10-fold in a 2 h incubation), was obtained over a narrow dose range (e.g.1-10 microM) in mouse and rat Leydig cells and in rat adrenocortical cells. The same concentrations of calmidazolium decreased basal cyclic AMP to undetectable levels in rat Leydig cells. Also, cyclic AMP stimulated with luteinizing hormone (LH), cholera toxin and forskolin was inhibited by calmidazolium (ED50 2 microM). In contrast with the actions of LH and cyclic AMP analogues on steroidogenesis, the effect of calmidazolium was not inhibited by removal of extracellular Ca2+, or by the addition of La3+ (a Ca(2+)-entry blocker), or the addition of cycloheximide (an inhibitor of protein translation). However, like dibutyryl cyclic AMP, calmidazolium-stimulated steroidogenesis was inhibited by aminoglutethimide, an inhibitor of cholesterol side-chain cleavage. Another calmodulin inhibitor, trifluoperazine, did not stimulate steroidogenesis. It is concluded that calmidazolium has a similar effect on steroidogenesis to LH, but by-passes the requirements for cyclic AMP, Ca2+, and protein synthesis. Calmidazolium is therefore a potentially important probe for elucidating the mechansims of control of steroidogenesis.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献