An extracellular domain of the β subunit is essential for processing, transport and kinase activity of insulin receptor

Author:

Haruta T1,Sawa T1,Takata Y1,Imamura T1,Takada Y1,Morioka H1,Yang G H1,Kobayashi M1

Affiliation:

1. First Department of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, Japan

Abstract

The extracellular portion of the insulin receptor (IR) beta-subunit has four cysteine and four asparagine residues which are potentially involved in disulphide bond formation between the alpha- and beta-subunits and N-linked glycosylation respectively. However, the function of this portion is not fully understood. In order to investigate the role of the extracellular domain of beta-subunit, we created a deletion mutant of IR cDNA which lacked 47 amino acid residues encoded by 141 bp corresponding to exon 13 of the IR gene. Insulin binding and surface labelling of COS 7 cells transiently expressing the mutant insulin receptors (IR delta Ex13) showed that the mutated receptors were not expressed on the cell surface. However, immunoblot analysis showed that uncleaved form (190 kDa) of the mutant receptors were intracellularly expressed. Deglycosylation with endoglycosidase H showed that the mutant receptors had mainly high-mannose oligosaccharide chains. The mutant IRs bound with high affinity to lentil lectin but with low affinity to wheat germ agglutinin. Therefore, it is suggested that misfolding of the mutant receptors inhibits transport to the Golgi apparatus where processing of oligosaccharide chains, as well as proteolytic cleavage into subunits, takes place. The binding affinity of the mutant receptors for insulin was 50% of normal. Furthermore, insulin-stimulated autophosphorylation of IR delta Ex13 was markedly impaired. These data provide the evidence for a critical role of the extracellular domain of IR beta-subunit for processing and transport as well as the intramolecular signal transduction to activate IR tyrosine kinase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3