Affiliation:
1. Institute of Medical Biochemistry, Dental School, University of Oslo, Oslo, Norway
2. †Deparment of Physiology and Biochemistry, Dental School, University of Oslo, Oslo, Norway
Abstract
Studies of effects of 4-thia-substituted fatty acid analogues on rat liver lipid metabolism are described. With isolated hepatocytes tetradecylthiopropionate was shown to divert [1-14C]oleate from beta-oxidation into esterification, the total amount of [1-14C]oleate metabolized remaining unchanged. Tetradecylthiopropionyl-CoA was a good substrate for mitochondrial carnitine palmitoyltransferases I and II (EC 2.3.1.21), acyl-CoA oxidase (EC 1.3.3.6), for the microsomal (but not mitochondrial) glycerophosphate acyltransferase (EC 2.3.1.15), and for long-chain acyl-CoA dehydrogenase (EC 1.3.99.3). In isolated hepatocytes, its 4-thia-trans-2-enoic derivative, tetradecylthioacrylate, inhibits both beta-oxidation of, and incorporation of, [1-14C]oleate into lipids. In rat liver mitochondria tetradecylthiocrylate inhibited beta-oxidation. The degree of inhibition was not markedly increased by preincubation with tetradecylthioacrylate. Tetradecylthioacrylyl-CoA was a poor substrate for carnitine palmitoyltransferase I, and inhibited carnitine palmitoyltransferase II, microsomal glycerophosphate acyltransferase and acyl-CoA oxidase. It is concluded that the inhibitory effects of tetradecylthiopropionyl-CoA are expressed intramitochondrially, whereas primary sites of inhibition by tetradecylthioacrylyl-CoA are extramitochondrial.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献