The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways

Author:

GONDA Koichi12,OKAMOTO Hiroyuki13,TAKUWA Noriko1,YATOMI Yutaka4,OKAZAKI Hiroshi5,SAKURAI Takeshi6,KIMURA Sadao7,SILLARD Rannar8,HARII Kiyonori2,TAKUWA Yoh159

Affiliation:

1. Department of Molecular and Cellular Physiology, University of Tokyo Graduate School of Medicine, Tokyo 113–0033, Japan

2. Department of Plastic and Reconstructive Surgery, University of Tokyo Graduate School of Medicine, Tokyo 113–0033, Japan

3. Department of Vascular Surgery, University of Tokyo Graduate School of Medicine, Tokyo 113–0033, Japan

4. Department of Laboratory Medicine, Yamanashi Medical University, Tamaho-cho, Yamanashi 408–3898, Japan

5. Department of Cardiovascular Biology, University of Tokyo Graduate School of Medicine, Tokyo 113–0033, Japan

6. Department of Pharmacology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–0006, Japan

7. Division of Cardiovascular Biology, Center for Biomedical Sciences, Chiba University Medical School, Chiba 260–0856, Japan

8. Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden

9. Foundation for Advancement of International Science, Tsukuba, Ibaraki 305–0005, Japan

Abstract

In the present study, we determined the agonist specificity and the signalling mechanisms of a putative sphingosine 1-phosphate (S1P) receptor, AGR16. In CHO cells transiently transfected with an AGR16 expression vector, but not in cells transfected with an empty vector, the addition of a low concentration of S1P (1 nM) caused an increase in the intracellular free Ca2+ concentration ([Ca2+]i) by mobilization of Ca2+ from both intra- and extra-cellular pools. To determine the spectrum of agonists for AGR16, we employed K562 cells, which in the naive state do not respond at all to either S1P or structurally related lipids with an increase in [Ca2+]i. In K562 cells stably expressing AGR16, S1P and sphingosylphosphorylcholine (SPC) dose-dependently increased [Ca2+]i with half-maximal values of 3 nM and 100 nM respectively. In CHO cells stably expressing AGR16 (CHO-AGR16), but not in parental CHO cells, we observed specific binding of [32P]S1P, which was displaced by unlabelled S1P and SPC. In CHO-AGR16 cells, but not in parental CHO cells, S1P stimulated the production of inositol phosphates and Ca2+ mobilization which was only 30% inhibited by pertussis toxin (PTX), different from the case of the recently identified S1P receptor EDG1. Also in CHO-AGR16 cells, but not in CHO cells, S1P at higher concentrations activated mitogen-activated protein kinase (MAPK) in a PTX-sensitive and Ras-dependent manner. S1P also induced the activation of two stress-activated MAPKs, c-Jun N-terminal kinase and p38, in a manner that was totally insensitive to PTX. In CHO-AGR16 cells, S1P induced stress-fibre formation, with an increase in myosin light chain phosphorylation, in a PTX-insensitive and Rho-dependent manner. S1P also induced an increase in the cellular cAMP content in CHO-AGR16 cells, which contrasts sharply with the case of EDG1. These results establish that the S1P receptor AGR16 is coupled via both PTX-sensitive and -insensitive G-proteins to multiple effector pathways.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3