Affiliation:
1. Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand.
Abstract
Sheep liver mitochondrial aldehyde dehydrogenase reacts with 2,2′-dithiodipyridine and 4,4′-dithiodipyridine in a two-step process: an initial rapid labelling reaction is followed by slow displacement of the thiopyridone moiety. With the 4,4′-isomer the first step results in an activated form of the enzyme, which then loses activity simultaneously with loss of the label (as has been shown to occur with the cytoplasmic enzyme). With 2,2′-dithiodipyridine, however, neither of the two steps of the reaction has any effect on the enzymic activity, showing that the mitochondrial enzyme possesses two cysteine residues that must be more accessible or reactive (to this reagent at least) than the postulated catalytically essential residue. The symmetrical reagent 5,5′-dithiobis-(1-methyltetrazole) activates mitochondrial aldehyde dehydrogenase approximately 4-fold, whereas the smaller related compound methyl l-methyltetrazol-5-yl disulphide is a potent inactivator. These results support the involvement of mixed methyl disulphides in causing unpleasant physiological responses to ethanol after the ingestion of certain antibiotics.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献