A key functional role for the insulin-like growth factor 1 N-terminal pentapeptide

Author:

Bagley C J1,May B L2,Szabo L1,McNamara P J1,Ross M3,Francis G L3,Ballard F J3,Wallace J C1

Affiliation:

1. Department of Biochemistry, University of Adelaide, Adelaide, South Australia 5000, Australia.

2. Bresatec, G.P.O. Box 498, Adelaide, South Australia 5001, Australia.

3. C.S.I.R.O. Division of Human Nutrition, Kintore Avenue, Adelaide, South Australia 5000, Australia.

Abstract

In order to elucidate the role of the N-terminus of insulin-like growth factor 1 (IGF-1) with respect to its biological properties, we chemically synthesized analogues of IGF-1 truncated by one to five amino acid residues from the N-terminus. In a bioassay that measured the stimulation of protein synthesis in rat L6 myoblasts, the concentrations required to produce a half-maximal response were: IGF-1, 13 ng/ml; des-(1)-IGF-1, 10 ng/ml; des-(1-2)-IGF-1, 13 ng/ml; des-(1-3)-IGF-1, 1.5 ng/ml; des-(1-4)-IGF-1, 5.1 ng/ml; des-(1-5)-IGF-1, 1200 ng/ml. When tested for their abilities to compete with 125I-IGF-1 binding to L6 myoblasts at 3 degrees C, the concentrations required for 50% competition were: IGF-1, des-(1)-IGF-1 and des-(1-2)-IGF-1, 20 ng/ml; des-(1-3)-IGF-1, 14 ng/ml; des-(1-4)-IGF-1, 40 ng/ml; des-(1-5)-IGF-1, greater than 1000 ng/ml. Receptor-binding experiments at 25 degrees C, however, gave results suggesting that the myoblasts were secreting a binding protein selective for the three longest peptides. This interpretation was confirmed by binding studies with medium conditioned by the L6 myoblasts as well as binding protein purified from MDBK-cell-conditioned medium. In both cases IGF-1, des-(1)-IGF-1 and des-(1-2)-IGF-1 competed for tracer IGF-1 binding at least 60-fold better than did the three shorter peptides. The results obtained account for the increased potency of des-(1-3)-IGF-1 and des-(1-4)-IGF-1, since their activities are not attenuated by the binding protein, and the relatively lower potency of des-(1-4)-IGF-1 is a consequence of this peptide binding less well to the L6-myoblast receptor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3