Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes

Author:

Laato M1,Kähäri V M1,Niinikoski J1,Vuorio E1

Affiliation:

1. Department of Surgery, University of Turku, SF-20520 Turku, Finland

Abstract

The effects of epidermal growth factor (EGF) on granulation-tissue formation and collagen-gene expression were studied in experimental sponge-induced granulomas in rats. After daily administration of 5 micrograms of EGF into the sponge, total RNA was extracted from the ingrown granulation tissue at days 4 and 7 and analysed by Northern hybridization for the contents of mRNAs for types I and III procollagens. EGF treatment increased procollagen mRNA, particularly at day 4. To determine whether this elevation was due to increased proliferation of collagen-producing fibroblasts or to activation of collagen-gene expression in these cells, fibroblast cultures were started from granulation tissue and treated with EGF. These experiments confirmed that EGF is a potent mitogen for granuloma fibroblasts in a dose-dependent manner. The effect of EGF treatment on radioactive hydroxyproline production in cultured cells was inhibitory. The decreased rate of collagen synthesis was also indicated by decreased amounts of procollagen mRNAs. The results suggest that the stimulation of wound healing and collagen production by EGF is due to increased fibroblast proliferation, and not to increased expression of type I and III procollagen genes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3