Determinants of activity in glutaredoxins: an in vitro evolved Grx1-like variant of Escherichia coli Grx3

Author:

Elgán Tobias H.12,Planson Anne-Gaëlle3,Beckwith Jon3,Güntert Peter456,Berndt Kurt D.12

Affiliation:

1. Department of Biosciences and Nutrition, Karolinska Institutet, NOVUM, S-141 57 Huddinge, Sweden

2. School of Life Sciences, Södertörns Högskola, S-141 89 Huddinge, Sweden

3. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, U.S.A.

4. Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan

5. Institute of Biophysical Chemistry and Frankfurt Institute for Advanced Studies, Max-von-Laue-Straße 9, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany

6. Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan

Abstract

The Escherichia coli glutaredoxins 1 and 3 (Grx1 and Grx3) are structurally similar (37% sequence identity), yet have different activities in vivo. Unlike Grx3, Grx1 efficiently reduces protein disulfides in proteins such as RR (ribonucleotide reductase), whereas it is poor at reducing S-glutathionylated proteins. An E. coli strain lacking genes encoding thioredoxins 1 and 2 and Grx1 is not viable on either rich or minimal medium; however, a M43V mutation in Grx3 restores growth under these conditions and results in a Grx1-like protein [Ortenberg, Gon, Porat and Beckwith (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 7439–7944]. To uncover the structural basis of this change in activity, we have compared wild-type and mutant Grx3 using CD and NMR spectroscopy. Ligand-induced stability measurements demonstrate that the Grx3(M43V/C65Y) mutant has acquired affinity for RR. Far-UV CD spectra reveal no significant differences, but differences are observed in the near-UV region indicative of tertiary structural changes. NMR 1H-15N HSQC (heteronuclear single quantum coherence) spectra show that approximately half of the 82 residues experience significant (Δδ>0.03 p.p.m.) chemical shift deviations in the mutant, including nine residues experiencing extensive (Δδ≥0.15 p.p.m.) deviations. To test whether the M43V mutation alters dynamic properties of Grx3, H/D (hydrogen/deuterium) exchange experiments were performed demonstrating that the rate at which backbone amides exchange protons with the solvent is dramatically enhanced in the mutant, particularly in the core of the protein. These data suggest that the Grx1-like activity of the Grx3(M43V/C65Y) mutant may be explained by enhanced intrinsic motion allowing for increased specificity towards larger substrates such as RR.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3