Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin

Author:

LEE-KWON Whaseon1,PARK Deokbae1,BERNIER Michel1

Affiliation:

1. Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A.

Abstract

Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3´-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21ras-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P< 0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P< 0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras–ERK-dependent pathway without the involvement of the phosphatidylinositol 3´-kinase/pp70 S6 kinase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3