Biosynthesis and secretion of procollagenase by rabbit synovial fibroblasts. Inhibition of procollagenase secretion by monensin and evidence for glycosylation of procollagenase
Author:
Nagase H,Brinckerhoff C E,Vater C A,Harris E D
Abstract
Monolayer cultures of rabbit synovial fibroblasts stimulated with phorbol myristate acetate to produce large amounts of collagenase (EC 3.4.24.7) were used to study the biosynthesis and secretion of this enzyme. [3H]Leucine was added to cell cultures for pulse-chase and continuous-labelling experiments. The labelled procollagenase synthesized was identified by immunoprecipitation followed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and fluorography. The amounts of intracellular and extracellular proenzyme were quantified by measuring radioactivity incorporated into the proteins. procollagenase was synthesized as doublet proteins of Mr 57 000 and Mr 61 000. Immunoprecipitable proenzyme proteins were first detected in culture medium 35 min after [3H]leucine was added to the cells. Monensin treatment of the cells inhibited procollagenase secretion and led to intracellular accumulation of the proenzyme. Cells treated with tunicamycin produced only the 57 000-Mr form, indicating that in rabbit synovial cells the 61 000-Mr form was post-translationally modified by addition of oligosaccharides to asparagine residues. The ratios of glycosylated to unglycosylated forms in cell lysates and in culture medium were 0.22:1 and 0.07:1 respectively.
Publisher
Portland Press Ltd.
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. References;Diagnosis and Management of Lameness in the Horse;2011
2. Immunohistochemistry of MMPs and TIMPs;Methods in Molecular Biology;2010
3. Cytokines;Ciba Foundation Symposium 136 - Cell and Molecular Biology of Vertebrate Hard Tissues;2007-09-28
4. Osteoarthritis;Diagnosis and Management of Lameness in the Horse;2003
5. Role of Protein Kinase C Signaling in Collagen Degradation by Rabbit Corneal Fibroblasts Cultured in Three-Dimensional Collagen Gels;Cornea;2002-08