Biosynthesis and secretion of procollagenase by rabbit synovial fibroblasts. Inhibition of procollagenase secretion by monensin and evidence for glycosylation of procollagenase

Author:

Nagase H,Brinckerhoff C E,Vater C A,Harris E D

Abstract

Monolayer cultures of rabbit synovial fibroblasts stimulated with phorbol myristate acetate to produce large amounts of collagenase (EC 3.4.24.7) were used to study the biosynthesis and secretion of this enzyme. [3H]Leucine was added to cell cultures for pulse-chase and continuous-labelling experiments. The labelled procollagenase synthesized was identified by immunoprecipitation followed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and fluorography. The amounts of intracellular and extracellular proenzyme were quantified by measuring radioactivity incorporated into the proteins. procollagenase was synthesized as doublet proteins of Mr 57 000 and Mr 61 000. Immunoprecipitable proenzyme proteins were first detected in culture medium 35 min after [3H]leucine was added to the cells. Monensin treatment of the cells inhibited procollagenase secretion and led to intracellular accumulation of the proenzyme. Cells treated with tunicamycin produced only the 57 000-Mr form, indicating that in rabbit synovial cells the 61 000-Mr form was post-translationally modified by addition of oligosaccharides to asparagine residues. The ratios of glycosylated to unglycosylated forms in cell lysates and in culture medium were 0.22:1 and 0.07:1 respectively.

Publisher

Portland Press Ltd.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Diagnosis and Management of Lameness in the Horse;2011

2. Immunohistochemistry of MMPs and TIMPs;Methods in Molecular Biology;2010

3. Cytokines;Ciba Foundation Symposium 136 - Cell and Molecular Biology of Vertebrate Hard Tissues;2007-09-28

4. Osteoarthritis;Diagnosis and Management of Lameness in the Horse;2003

5. Role of Protein Kinase C Signaling in Collagen Degradation by Rabbit Corneal Fibroblasts Cultured in Three-Dimensional Collagen Gels;Cornea;2002-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3