Mechanism of interaction between actin and membrane lipids: a pressure-tuning infrared spectroscopy study

Author:

Gicquaud C1,Wong P2

Affiliation:

1. Département de Chimie Biologie, Université du Québec à Trois Riviéres, CP 500 Trois Riviéres, Quebec, Canada, G9A 5H7

2. National Research Council, 100 Sussex Drive, Ottawa, Ontario, Canada KlA OR6

Abstract

Using pressure-tuning Fourier transform infrared spectroscopy to study an in vitro system consisting of actin and distearoyl-phosphatidylcholine (DSPC) liposomes, we have determined the mechanism of interaction between actin and membrane lipids. This interaction results in a significant conformational change in actin molecules. Analysis of the amide I band of actin shows an increase in the beta-sheets to alpha-helix ratio, in random turns, and in interactions between actin monomers. In the absence of lipids, the actin molecules are denatured by pressures of 8 x 10(8) Pa and more, which give rise to a random organization of the peptide chain. However, in the presence of DSPC liposomes, pressure greater than 2 x 10(8) Pa induces a change in actin conformation, which is dominated by strongly interacting beta-sheets. As the spectra of the lipid molecules are not changed by the presence of actin, the organization of the lipid molecules in the bilayer is not affected by the protein. It is concluded from these results that this interaction of actin with membrane lipids involves very few lipid molecules. These lipid molecules may interact with actin at a few specific sites on the protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3