Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function

Author:

ASAMOTO Yasumasa1,TAZUMA Susumu1,OCHI Hidenori1,CHAYAMA Kazuaki1,SUZUKI Hiroshi2

Affiliation:

1. First Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan

2. Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Bile-salt hydrophobicity regulates biliary phospholipid secretion and subselection. The aim of this study was to determine whether bile salts can influence liver plasma membrane phospholipids and fluidity in relation to the ATP-dependent transporter. Rats were depleted of bile salts by overnight biliary diversion and then sodium taurocholate was infused intravenously at a constant rate (200nmol/min per 100g of body weight), followed by infusion of bile salts with various hydrophobicities (taurochenodeoxycholate, tauroursodeoxycholate, tauro-β-muricholate, tauro-α-muricholate at 200nmol/min per 100g of body weight). The hydrophobicity of the infused bile salts correlated with that of biliary phospholipids, but was inversely related to that of the canalicular membrane bilayer. Canalicular membrane fluidity (estimated by 1,6-diphenyl-1,3,5-hexatriene fluorescence depolarization) and expression of multidrug-resistance proteins (Mrp2, Mrp3) and apical Na+-dependent bile-salt transporter (ASBT) were increased by hydrophilic bile salts, although there was no marked change in the expression of P-glycoprotein subfamilies (Mdr2). Bile-salt export pump (Bsep) expression was increased along with increasing bile-salt hydrophobicity. Bile salts modulate canalicular membrane phospholipids and membrane fluidity, as well as the ATP-dependent transporter expression and function, and these actions are associated with their hydrophobicity. The cytoprotective effect of hydrophilic bile salts seems to be associated with induction of Mrp2, Mrp3 and ASBT.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3