Chemical evidence for the existence of activated G-actin

Author:

Shu W P1,Wang D1,Stracher A1

Affiliation:

1. Department of Biochemistry, SUNY Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York, NY 11203, U.S.A.

Abstract

Globular actin (G-actin) will polymerize to form filamentous actin (F-actin) under physiological ionic conditions, and is known to be regulated by univalent and bivalent cations, such as K+ and Mg2+. The current concept of this process involves four steps: activation, nucleation, elongation and annealing. Evidence for the existence of activated G-protein has been suggested by changes in the resistance to proteolysis [Rich & Estes (1976) J. Mol. Biol. 104, 777-792] and u.v.-light absorption [Rouayrenc & Travers (1981) Eur. J. Biochem. 116, 73-77]. More recently we [Liu et al. (1990) Biochem. J. 266, 453-459] have provided direct chemical evidence for extensive conformational changes during the transformation of G-actin into F-actin. In this study we now present direct chemical evidence for the existence of a short-lived species, an activated form of G-actin, which can be detected by changes in the accessibility of the free thiol groups on the G-actin molecule when modified by a specific thiol-group-targeted reagent, 7-dimethylamino-4-methyl-3-N-maleimidylcoumarin (DACM). The presence of K+ and/or Mg2+ ions caused a large increase in the accessibility of the thiol groups of Cys-217 and Cys-374, but not those of Cys-10 and Cys-257. Mg2+ effected relatively faster changes than did K+ ions. The results suggest that the function of these ions is to convert G-actin into an activated form, and further suggest that the change in conformation is mainly confined to the large domain. Such changes at least involve certain portions of the G-actin molecule that contain Cys-217 and Cys-374. On the other hand, little or no significant change could be observed in the small domain of G-actin as reflected by the accessibility of Cys-10. The bound nucleotide remained as ATP during the activation of G-actin and was hydrolysed to ADP on polymerization. The activated G-actin had a life-time of about 8 min or less depending on the concentration of G-actin. At higher protein concentration, its life-time was much shorter, probably owing to the earlier onset of polymerization, which apparently is governed by the concentration of the activated form. The life-time of this new species can be extended by lowering the temperature and is less affected by actin concentration. This new species is considered to be an activated form of G-actin, since polymerization renders all the thiol groups on actin inaccessible to the reagent DACM.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3