miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression

Author:

Xi Liang1,Zhang Yongfeng1,Kong Shengnan2,Liang Wei1

Affiliation:

1. Department of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China

2. Department of Medical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China

Abstract

miR-34 was reported to be involved in multiple tumors occurrence and development. The aim of the present study was to explore the impact of miR-34 on osteosarcoma and related mechanisms. Tumor tissues and non-tumor tissues of 34 patients with osteosarcoma were collected. qRT-PCR detection revealed that miR-34 was significantly down-regulated in tumor tissues (P<0.05). hFOB 1.19 and MG-63 cells were cultured. qRT-PCR detection showed that miR-34 was also significantly down-regulated in MG-63 cells (P<0.05). After transfection by miR-34 mimics, MG-63 cells proliferation in nude mice was significantly impaired (P<0.05), and percentage of apoptosis as well as caspase-3 positive cells proportion of osteosarcoma tissue in nude mice was markly increased (P<0.05). Western blot and immunofluorescence results also demonstrated that TGIF2 relative expression and TGIF2 positive cells proportion were both dramatically decreased (P<0.05). By luciferase reporter assay, we found that TGIF2 was the target gene of miR-34. After transfected by TGIF2 overexpression vector or co-transfected by miR-34 mimics and TGIF2 overexpression vector, we observed that, compared with blank group, tumor volume was significantly increased and apoptotic cells as well as caspase-3 positive cells proportion was obviously decreased in TGIF2 group (P<0.05), while no significant difference was found in these indicators between blank group and TGIF2 + mimics group. We concluded that miR-34 inhibited growth and promoted apoptosis of osteosarcoma in nude mice through targetting regulated TGIF2 expression.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3