Regulation of hepatocyte plasma membrane α1-adrenergic receptors by 4β-phorbol 12-myristate 13-acetate

Author:

Beeler J F1,Cooper R H1

Affiliation:

1. Department of Pharmacology, University of South Carolina School of Medicine, Columbia SC 29208, U.S.A.

Abstract

The effect of phorbol 12-myristate 13-acetate (PMA) on hepatocyte alpha 1-adrenergic receptors was determined by [3H]prazosin binding to plasma membranes from control and PMA-treated hepatocytes. Membranes from hepatocytes incubated with PMA (1 microgram/ml) for 1 h exhibited a 40% decrease in alpha 1-adrenergic receptors (481 +/- 10 fmol/mg of protein; mean +/- S.E.M. for three separate experiments) relative to vehicle-treated (dimethylformamide) hepatocytes (802 +/- 91 fmol/mg of protein; n = 3), with no significant effect on the KD. The PMA-induced decrease in alpha 1-adrenergic receptors was maximal by 30 min and half-maximal inhibition of [3H]prazosin binding occurred with a PMA concentration of approx. 15 ng/ml. Pretreatment of hepatocytes with staurosporine (5 microM) blocked the effect of PMA, and 4 beta-phorbol 13-monoacetate was ineffective, suggesting the involvement of protein kinase C (PKC). Treatment of hepatocytes with primaquine (300 microM) for 15 min decreased hepatocyte plasma membrane alpha 1-adrenergic receptors by 34.0 +/- 2.4% (mean +/- S.E.M. of three experiments). Removal of primaquine allowed essentially complete recovery (98 +/- 4%; mean +/- S.E.M. for five separate experiments) of plasma membrane [3H]prazosin binding within 20 min, suggesting that the alpha 1-adrenergic receptor undergoes endocytotic recycling. Addition of PMA (1 microgram/ml) to hepatocytes immediately after removal of primaquine, completely inhibited the increase in plasma membrane alpha 1-adrenergic receptors relative to control cells, but had no effect on hepatocytes whose cell surface alpha 1-receptors remaining after primaquine treatment had been inactivated by alkylation. These observations suggested that activation of PKC may facilitate the internalization of the alpha 1-adrenergic receptor in hepatocytes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3