Calcium, mitochondria and reperfusion injury: a pore way to die

Author:

Halestrap A.P.1

Affiliation:

1. Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, U.K.

Abstract

When mitochondria are exposed to high Ca2+ concentrations, especially when accompanied by oxidative stress and adenine nucleotide depletion, they undergo massive swelling and become uncoupled. This occurs as a result of the opening of a non-specific pore in the inner mitochondrial membrane, known as the MPTP (mitochondrial permeability transition pore). If the pore remains open, cells cannot maintain their ATP levels and this will lead to cell death by necrosis. This article briefly reviews what is known of the molecular mechanism of the MPTP and its role in causing the necrotic cell death of the heart and brain that occurs during reperfusion after a long period of ischaemia. Such reperfusion injury is a major problem during cardiac surgery and in the treatment of coronary thrombosis and stroke. Prevention of MPTP opening either directly, using agents such as cyclosporin A, or indirectly by reducing oxidative stress or Ca2+ overload, provides a protective strategy against reperfusion injury. Furthermore, mice in which a component of the MPTP, CyP-D (cyclophilin D), has been knocked out are protected against heart and brain ischaemia/reperfusion. When cells experience a less severe insult, the MPTP may open transiently. The resulting mitochondrial swelling may be sufficient to cause release of cytochrome c and activation of the apoptotic pathway rather than necrosis. However, the CyP-D-knockout mice develop normally and show no protection against a range of apoptotic stimuli, suggesting that the MPTP does not play a role in most forms of apoptosis.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3