Fitting of enzyme kinetic data without prior knowledge of weights

Author:

Cornish-Bowden A,Endrenyi L

Abstract

A method is described for fitting equations to enzyme kinetic data that requires minimal assumptions about the error structure of the data. The dependence of the variances on the velocities is not assumed, but is deduced from internal evidence in the data. The effect of very bad observations (‘outliers’) is mitigated by decreasing the weight of observations that give large deviations from the fitted equation. The method works well in a wide range of circumstances when applied to the Michaelis-Menten equation, but it is not limited to this equation. It can be applied to most of the equations in common use for the analysis of steady-state enzyme kinetics. It has been implemented as a computer program that can fit a wide variety of equations with two, three or four parameters and two or three variables.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3