Advances in the design of new epoxy supports for enzyme immobilization–stabilization

Author:

Mateo C.1,Grazú V.1,Pessela B.C.C.1,Montes T.1,Palomo J.M.1,Torres R.1,López-Gallego F.1,Fernández-Lafuente R.1,Guisán J.M.1

Affiliation:

1. Departamento de Biocatálisis, Instituto de Catálisis, CSIC (Consejo Superior de Investigaciones Científicas), Campus Universidad Autonoma, Cantoblanco, 28049 Madrid, Spain

Abstract

Multipoint covalent immobilization of enzymes (through very short spacer arms) on support surfaces promotes a very interesting ‘rigidification’ of protein molecules. In this case, the relative positions of each residue of the enzyme involved in the immobilization process have to be preserved unchanged during any conformational change induced on the immobilized enzyme by any distorting agent (heat, organic solvents etc.). In this way, multipoint covalent immobilization should induce a very strong stabilization of immobilized enzymes. Epoxy-activated supports are able to chemically react with all nucleophile groups placed on the protein surface: lysine, histidine, cysteine, tyrosine etc. Besides, epoxy groups are very stable. This allows the performance of very long enzyme–support reactions, enabling us to get very intense multipoint covalent attachment. In this way, these epoxy supports seem to be very suitable to stabilize industrial enzymes by multipoint covalent attachment. However, epoxy groups exhibit a low intermolecular reactivity towards nucleophiles and hence the enzymes are not able to directly react with the epoxy supports. Thus a rapid physical adsorption of enzymes on the supports becomes a first step, followed by an additional rapid ‘intramolecular’ reaction between the already adsorbed enzyme and the activated support. In this situation, a suitable first orientation of the enzyme on the support (e.g. through regions that are very rich in nucleophiles) is obviously necessary to get a very intense additional multipoint covalent immobilization. The preparation of different ‘generations’ of epoxy supports and the design of different protocols to fully control the first interaction between enzymes and epoxy supports will be reviewed in this paper. Finally, the possibilities of a directed immobilization of mutated enzymes (change of an amino acid by cysteine on specific points of the protein surface) on tailor-made disulfide-epoxy supports will be discussed as an almost-ideal procedure to achieve very intense and very efficient rigidification of a desired region of industrial enzymes.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3