Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway

Author:

ASAMI Tadao1,MIZUTANI Masaharu2,SHIMADA Yukihisa3,GODA Hideki3,KITAHATA Nobutaka1,SEKIMATA Katsuhiko4,HAN Sun-Young4,FUJIOKA Shozo3,TAKATSUTO Suguru5,SAKATA Kanzo2,YOSHIDA Shigeo13

Affiliation:

1. RIKEN, 2—1 Hirosawa, Wako, Saitama 351—0198, Japan

2. Institute for Chemical Research, Kyoto University, Gokanosho, Uji, Kyoto 611-0011, Japan

3. Plant Science Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

4. Department of Biological and Environmental Sciences, Saitama University, Shimo-okubo 255, Saitama 338-8570, Japan

5. Department of Chemistry, Joetsu University of Education, Joetsu-shi, Niigata 943-8512, Japan

Abstract

Triadimefon (Bayleton®), a widely used triazole-type fungicide, affects gibberellin (GA) biosynthesis and 14α-demethylase in sterol biosynthesis. The present study revealed that the phenotype of Arabidopsis treated with triadimefon resembled that of a brassinosteroid (BR)-biosynthesis mutant, and that the phenotype was rescued by brassinolide (BL), the most active BR, partly rescued by GA, and fully rescued by the co-application of BL and GA, suggesting that triadimefon affects both BR and GA biosynthesis. The target sites of triadimefon were investigated using a rescue experiment, feeding triadimefon-treated Arabidopsis BR-biosynthesis intermediates, and a binding assay to expressed DWF4 protein, which is reported to be involved in the BR-biosynthesis pathway. The binding assay indicated that the dissociation constant for triadimefon was in good agreement with the activity in an in planta assay. In the triadimefon-treated Arabidopsis cells, the CPD gene in the BR-biosynthesis pathway was up-regulated, probably due to feedback regulation caused by BR deficiency. These results strongly suggest that triadimefon inhibits the reaction catalysed by DWF4 protein and induces BR deficiency in plants. As triadimefon treatment has proved to be beneficial to plants, this result suggests that BR-biosynthesis inhibitors can be applied to crops.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3