Affiliation:
1. Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
2. Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan
Abstract
In yeast two-hybrid screening, protein 4.1N, a scaffolding protein, was identified as a binding partner of the α7 ACh (acetylcholine) receptor. For rat hippocampal slices, the linoleic acid derivative DCP-LA {8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid} increased the association of the α7 ACh receptor with 4.1N, and the effect was inhibited by GF109203X, an inhibitor of PKC (protein kinase C), although DCP-LA did not induce PKC phosphorylation of 4.1N. For PC-12 cells, the presence of the α7 ACh receptor in the plasma membrane fraction was significantly suppressed by knocking down 4.1N. DCP-LA increased the presence of the α7 ACh receptor in the plasma membrane fraction, and the effect was still inhibited by knocking down 4.1N. In the monitoring of α7 ACh receptor mobilization, DCP-LA enhanced signal intensities for the α7 ACh receptor at the membrane surface in PC-12 cells, which was clearly prevented by knocking down 4.1N. Taken together, the results of the present study show that 4.1N interacts with the α7 ACh receptor and participates in the receptor tethering to the plasma membrane. The results also indicate that DCP-LA increases membrane surface localization of the α7 ACh receptor in a 4.1N-dependent manner under the control of PKC, but without phosphorylating 4.1N.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献