Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability

Author:

BOLTON Mark C.1,DUDHIA Jayesh2,BAYLISS Michael T.2

Affiliation:

1. The Kennedy Institute of Rheumatology, 1 Aspenlea Road, Hammersmith, London W6 8LH, U.K.

2. Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, U.K.

Abstract

The rates of incorporation of radiolabelled leucine into aggrecan and link protein have been measured in human articular cartilage of different ages. Aggrecan and link protein were purified in the A1 fraction of CsCl gradients as a result of their ability to form high-buoyant-density proteoglycan aggregates with hyaluronic acid. Separation of the aggrecan from the link protein was achieved by Mono Q anion-exchange chromatography. The rates of synthesis of both aggrecan and link protein decreased with age. The age-related decrease in synthesis of aggrecan was paralleled by a decrease in the rate of sulphate incorporation into glycosaminoglycan chains. The synthesis of link protein decreased with age to a greater extent than that of aggrecan such that the ratio of the rates of link protein to aggrecan synthesis decreased from 1 in immature cartilage to 0.2 in mature cartilage. The age-related decrease in link protein synthesis is controlled at least in part by transcriptional or post-trancriptional mechanisms, as shown by the accompanying age-related decrease in link-protein mRNA. The absence of any age-related decrease in aggrecan mRNA suggests that the decrease in synthesis of aggrecan core protein is controlled by a translational mechanism. Measurement of the total tissue content of aggrecan and link protein by radioimmunoassay revealed an age-related increase in the accumulation of these matrix proteins, even though their de novo synthesis was decreasing. This illustrates the importance that the regulation of extracellular post-translational modification also has in controlling the overall turnover of the cartilage matrix.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3