RAGE biology, atherosclerosis and diabetes

Author:

Barlovic Drazenka Pongrac1,Soro-Paavonen Aino2,Jandeleit-Dahm Karin A. M.34

Affiliation:

1. Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloska 7, Ljubljana, Slovenia

2. Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland

3. Diabetes Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Australia

4. Department of Medicine, Monash University, Melbourne, Australia

Abstract

Diabetes is characterized by accelerated atherosclerosis with widely distributed vascular lesions. An important mechanism by which hyperglycaemia contributes to vascular injury is through the extensive intracellular and extracellular formation of AGEs (advanced glycation end products). AGEs represent a heterogeneous group of proteins, lipids and nucleic acids, irreversibly cross-linked with reducing sugars. AGEs are implicated in the atherosclerotic process, either directly or via receptor-mediated mechanisms, the most extensively studied receptor being RAGE (receptor for AGEs). The AGE–RAGE interaction alters cellular signalling, promotes gene expression and enhances the release of pro-inflammatory molecules. It elicits the generation of oxidative stress in numerous cell types. The importance of the AGE–RAGE interaction and downstream pathways leading to injurious effects as a result of chronic hyperglycaemia in the development, progression and instability of diabetic atherosclerotic lesions has been amply demonstrated in animal studies. Moreover, the deleterious link of AGEs with diabetic vascular complications has been suggested in many human studies. In the present review, our current understanding of their role as an important mediator of vascular injury through the various stages of atherosclerosis in diabetes will be reviewed and critically assessed.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3