Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis

Author:

REJMAN Joanna1,OBERLE Volker1,ZUHORN Inge S.1,HOEKSTRA Dick1

Affiliation:

1. Department of Membrane Cell Biology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands

Abstract

Non-phagocytic eukaryotic cells can internalize particles <1 µm in size, encompassing pathogens, liposomes for drug delivery or lipoplexes applied in gene delivery. In the present study, we have investigated the effect of particle size on the pathway of entry and subsequent intracellular fate in non-phagocytic B16 cells, using a range of fluorescent latex beads of defined sizes (50–1000 nm). Our data reveal that particles as large as 500 nm were internalized by cells via an energy-dependent process. With an increase in size (50–500 nm), cholesterol depletion increased the efficiency of inhibition of uptake. The processing of the smaller particles was significantly perturbed upon microtubule disruption, while displaying a negligible effect on that of the 500 nm beads. Inhibitor and co-localization studies revealed that the mechanism by which the beads were internalized, and their subsequent intracellular routing, was strongly dependent on particle size. Internalization of microspheres with a diameter <200 nm involved clathrin-coated pits. With increasing size, a shift to a mechanism that relied on caveolae-mediated internalization became apparent, which became the predominant pathway of entry for particles of 500 nm in size. At these conditions, delivery to the lysosomes was no longer apparent. The data indicate that the size itself of (ligand-devoid) particles can determine the pathway of entry. The clathrin-mediated pathway of endocytosis shows an upper size limit for internalization of approx. 200 nm, and kinetic parameters may determine the almost exclusive internalization of such particles along this pathway rather than via caveolae.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2442 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3