Selective inhibition of adenylate cyclase in bovine cortex by quinones: a novel cellular substrate for quinone cytotoxicity

Author:

Moullet O1,Dreyer J L1

Affiliation:

1. Department of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland

Abstract

Quinones are widely distributed substances of often potential toxicological significance. On the other hand, cyclic AMP is known to promote a cell-survival response and to retard apoptosis [Berridge, Tan and Hilton (1993) Exp. Hematol. 21, 269-276]. Therefore the effects of quinones on adenylate cyclase were tested. Adenylate cyclase is rapidly inhibited by quinones, with IC50 values of 40-45 microM for p-benzoquinone (BQ) or 200 microM for dichlorophenol-indophenol (DCIP), with 2-substituted quinones being inactive. Membrane solubilization decreases the IC50 values for BQ and DCIP to 18 microM and 40 microM respectively. The inhibition is not affected by GTP, GDP or analogues, or by cholera and pertussis toxins; therefore it is not mediated by a G-protein or the activation of a defined receptor. Further, the inhibition stoichiometrically competes with forskolin activation of adenylate cyclase, equimolar concentrations of quinone and forskolin restoring the enzyme activity to its basal value. Reduction of BQ with sodium dithionite stoichiometrically prevents the inhibition of adenylate cyclase; in turn, oxidation of hydroquinone with ferricyanide fully restores it, indicating that the oxidized state of the quinone is required for inhibition. In addition, BQ is cytotoxic in vivo on HepG2, a human hepatocellular carcinoma cell line, but the effect can be prevented with forskolin. In plasma membranes, BQ tightly binds only one major and two minor proteins; these BQ-binding proteins were purified by means of labelling with [14C]BQ followed by PAGE under native conditions. Together these observations indicate that the action of quinone can be traced to targeting a limited number of proteins at the plasma membrane in a highly selective way and to affecting key enzymes such as adenylate cyclase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3