Energy conservation by the plant mitochondrial cyanide-insensitive oxidase. Some additional evidence

Author:

Wilson S B

Abstract

Several measures of energy conservation, namely ADP/O ratio, P/O ratio, ATP/O ratio and phosphorylation detected by continuous assay with purified firefly luciferase and luciferin, all show phosphorylation can occur with mung-bean mitochondria at cyanide concentrations sufficient to inhibit the cytochrome oxidase system. Phosphorylation in the presence of cyanide is uncoupler- oligomycin- and salicylhydroxamate-sensitive. The participation of phosphorylation site 1 is excluded, phosphorylation being attributable to a single phosphorylation site associated with the cyanide-insensitive oxidase. The cyanide-insensitive oxidase has also been shown to support a variety of other energy-linked functions, namely, Ca2+ uptake, reversed electron transport and the maintenance of a membrane potential detected by the dye probes 8-anilinonaphthalene-1-sulphonate and safranine. High concentrations of cyanide have uncoupler-like activity, decreasing the ADP/O ratio and the t 1/2 for the decay of a pH pulse through the the mitochondrial membrane. This uncoupler-like effect is most marked with aged mitochondria. The observations of energy conservation attributable to the cyanide-insensitive oxidase are compared with other reports where it is concluded that the alternative oxidase is uncoupled.

Publisher

Portland Press Ltd.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Plant Cell Biology;2019

2. Systemic Signaling in Light Acclimation of Leaves;Long-Distance Systemic Signaling and Communication in Plants;2013

3. References;Plant Cell Biology;2010

4. Relative Effect of 2,4-Dinitrophenol on the Respiratory Chain of Heterotrophic Euglena gracilis Adapted and Non-adapted to Antimycin A;Journal of Plant Physiology;1994-03

5. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria;Biochimica et Biophysica Acta (BBA) - Bioenergetics;1991-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3