Polyamine-induced Z-DNA conformation in plasmids containing (dA-dC)n.(dG-dT)n inserts and increased binding of lupus autoantibodies to the Z-DNA form of plasmids

Author:

Thomas T J1,Thomas T2

Affiliation:

1. Program in Clinical Pharmacology, Clinical Research Center, and Departments of Medicine and University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, U.S.A.

2. Environmental and Community Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, U.S.A.

Abstract

Blocks of potential Z-DNA-forming (dA-dC)n.(dG-dT)n sequences are ubiquitous in eukaryotic genomes. We examined whether naturally occurring polyamines, putrescine, spermidine and spermine, could provoke the Z-DNA conformation in plasmids pDHf2 and pDHf14 with 23 and 60 bp inserts respectively of (dA-dC)n.(dG-dT)n sequences using an e.l.i.s.a. Spermidine and spermine could provoke Z-DNA conformation in these plasmids, but putrescine was ineffective. For pDHf2 and pDHf14, the concentration of spermidine at the midpoint of B-DNA to Z-DNA transition was 25 microM, whereas that of spermine was 16 microM. Polyamine structural specificity was evident in the ability of spermidine homologues to induce Z-DNA. Inorganic cations, Co(NH3)6(3+) and Ru(NH3)6(3+), were ineffective. Our experiments also showed increased binding of anti-DNA autoantibodies from lupus patients as well as autoimmune MRL-lpr/lpr mice to pDHf2 and pDHf14 in the presence of polyamines. These data demonstrate that small blocks of (dA-dC)n.(dG-dT)n sequences could assume the Z-DNA conformation in the presence of natural polyamines. Increased concentrations of polyamines in the sera of lupus patients might facilitate immune complex-formation involving circulating DNA and anti-Z-DNA antibodies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3