Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether

Author:

ZOELLER Raphael A.1,LAKE Andrew C.1,NAGAN Narasimhan1,GAPOSCHKIN Daniel P.1,LEGNER Margaret A.1,LIEBERTHAL Wilfred2

Affiliation:

1. Department of Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, U.S.A.

2. Renal Section, Boston Medical Center, 88 East Newton Street, Boston, MA 02118, U.S.A.

Abstract

Exposure of plasmalogen-deficient variants of the murine cell line RAW 264.7 to short-term (0–100 min) treatment with electron transport inhibitors antimycin A or cyanide (chemical hypoxia) resulted in a more rapid loss of viability than in the parent strain. Results suggested that plasmalogen-deficient cells were more sensitive to reactive oxygen species (ROS) generated during chemical hypoxia; the mutants could be rescued from chemical hypoxia by using the antioxidant Trolox, an α-tocopherol analogue, and they were more sensitive to ROS generation by plumbagin or by rose bengal treatment coupled with irradiation. In addition, the use of buffers containing 2H2O greatly enhanced the cytotoxic effect of chemical hypoxia, suggesting the involvement of singlet oxygen. We used the unique enzymic deficiencies displayed by the mutants to differentially restore either plasmenylethanolamine (the major plasmalogen species normally found in this cell line) or its biosynthetic precursor, plasmanylethanolamine. Restoration of plasmenylethanolamine, which contains the vinyl ether, resulted in wild-type-like resistance to chemical hypoxia and ROS generators, whereas increasing levels of its precursor, which bears the saturated ether, had no effect on cell survival. These findings identify the vinyl ether double bond as a crucial element in cellular protection under these conditions and support the hypothesis that plasmalogens, through the vinyl ether, act as antioxidants to protect cells against ROS. These phospholipids might protect cells from ROS-mediated damage during events such as chemical hypoxia.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3