Identification of an iron–hepcidin complex

Author:

Farnaud Sébastien1,Rapisarda Chiara2,Bui Tam3,Drake Alex3,Cammack Richard3,Evans Robert W.4

Affiliation:

1. School of Biosciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.

2. Nutritional Sciences Division, King's College London, London SE1 1UL, U.K.

3. Molecular Biophysics Group, Pharmaceutical Science Research Division, Franklin–Wilkins Building, King's College London, London SE1 9NH, U.K.

4. Biosciences, School of Health Sciences and Social Care, Heinz Wolff Building, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.

Abstract

Following its identification as a liver-expressed antimicrobial peptide, the hepcidin peptide was later shown to be a key player in iron homoeostasis. It is now proposed to be the ‘iron hormone’ which, by interacting with the iron transporter ferroportin, prevents further iron import into the circulatory system. This conclusion was reached using the corresponding synthetic peptide, emphasizing the functional importance of the mature 25-mer peptide, but omitting the possible functionality of its maturation. From urine-purified native hepcidin, we recently demonstrated that a proportion of the purified hepcidin had formed iron–hepcidin complexes. This interaction was investigated further by computer modelling and, based on the sequence similarity of hepcidin with metallothionein, a three-dimensional model of hepcidin, containing one atom of iron, was constructed. To characterize these complexes further, the interaction with iron was analysed using different spectroscopic methods. Monoferric hepcidin was identified by MS, as were possibly other complexes containing two and three atoms of iron respectively, although these were present only in minor amounts. UV/visible absorbance and CD studies identified the iron-binding events which were facilitated at a physiological pH. EPR spectroscopy identified the ferric state of the bound metal, and indicated that the iron–hepcidin complex shares some similarities with the rubredoxin iron–sulfur complex, suggesting the presence of Fe3+ in a tetrahedral sulfur co-ordination. The potential roles of iron binding for hepcidin are discussed, and we propose either a regulatory function in the maturation of pro-hepcidin into active hepcidin or as the necessary link in the interaction between hepcidin and ferroportin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3