Hepoxilin A3 induces changes in cytosolic calcium, intracellular pH and membrane potential in human neutrophils

Author:

Dho S1,Grinstein S12,Corey E J3,Su W G3,Pace-Asciak C R14

Affiliation:

1. Research Institute, The Hospital for Sick Children, Toronto, Departments of Cambridge, MA, U.S.A.

2. Biochemistry and Harvard University, Cambridge, MA, U.S.A.

3. Department of Chemistry, Harvard University, Cambridge, MA, U.S.A.

4. Pharmacology, University of Toronto, Canada

Abstract

The effects of hepoxilin A3 (HxA3), a 12-lipoxygenase metabolite of arachidonic acid, on cytosolic calcium ([Ca2+]i), intracellular pH (pHi), transmembrane potential and right-angle light scattering in human neutrophils were investigated. A rapid, transient elevation of [Ca2+]i was observed with HxA3 which was dependent on the concentration used. The effect of HxA3 on [Ca2+]i was blocked by pertussis toxin, suggesting involvement of receptors coupled to GTP-binding proteins. Experiments in Ca2(+)-free medium and using intracellular Ca2+ chelators indicated that HxA3 mobilized Ca2+ from intracellular stores. At similar concentrations, HxA3 altered pHi, producing an initial acidification followed by an alkalinization. The initial acidification was decreased in cells loaded with a Ca2+ chelator. In the presence of N-ethyl-N-(1-methylethyl)amino amiloride, an inhibitor of the Na+/H+ antiport, HxA3 induced a greater acidification but failed to elicit the recovery phase, suggesting that the latter is due to activation of the antiport. HxA3 also depolarized the membrane potential, although this effect was small. A decrease in right-angle light scattering, qualitatively similar to that observed with chemotactic peptides, was seen with HxA3, indicating that the 12-lipoxygenase metabolite can induce shape changes in neutrophils. At the concentrations used for the above effects, HxA3 was unable to generate a respiratory burst. These findings suggest that hepoxilins, which are formed by stimulated neutrophils, may have a role as messengers in neutrophil activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3