Phosphorylation of CK1δ: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo

Author:

Giamas Georgios1,Hirner Heidrun1,Shoshiashvili Levani1,Grothey Arnhild1,Gessert Susanne2,Kühl Michael2,Henne-Bruns Doris1,Vorgias Constantinos E.3,Knippschild Uwe1

Affiliation:

1. Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstr. 9, 89075 Ulm, Germany

2. Institute for Biochemistry and Molecular Biology, Albert-Einstein-Allee 11, 89081 Ulm, Germany

3. Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis-Zographou, 15784 Athens, Greece

Abstract

The involvement of CK1 (casein kinase 1) δ in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1δ. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) α all phosphorylate CK1δ. PKA was identified as the major cellular CK1δCK (CK1δ C-terminal-targeted protein kinase) for the phosphorylation of CK1δ in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1δCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1δCK, and both PKA and CK1δCK phosphorylated CK1δ at Ser370in vitro. Furthermore, phosphorylation of CK1δ by PKA decreased substrate phosphorylation of CK1δ in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1δ for β-casein and the GST (gluthatione S-transferase)–p53 1–64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1δ to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1δ. In summary, we conclude that PKA phosphorylates CK1δ, predominantly at Ser370in vitro and in vivo, and that site-specific phosphorylation of CK1δ by PKA plays an important role in modulating CK1δ-dependent processes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3