Inactivation of papain by antithrombin due to autolytic digestion: a model of serpin inactivation of cysteine proteinases

Author:

BJÖRK Ingemar1,NORDLING Kerstin1,RAUB-SEGALL Elke1,HELLMAN Ulf2,OLSON Steven T.3

Affiliation:

1. Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Box 575, SE-751 23 Uppsala, Sweden

2. Ludwig Institute for Cancer Research, Uppsala Biomedical Center, Box 595, SE-751 24 Uppsala, Sweden

3. Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, U.S.A.

Abstract

Cross-class inhibition of cysteine proteinases by serpins differs from serpin inhibition of serine proteinases primarily in that no stable serpin–cysteine proteinase complex can be demonstrated. This difference in reaction mechanism was elucidated by studies of the inactivation of the cysteine proteinases, papain and cathepsin L, by the serpin antithrombin. The two proteinases were inactivated with second-order rate constants of (1.6±0.1)×103 and (8.6±0.4)×102 M-1·s-1 respectively. An antithrombin to papain inactivation stoichiometry of ∼ 3 indicated extensive cleavage of the inhibitor concurrent with enzyme inactivation, a behaviour verified by SDS/PAGE. N-terminal sequence analyses showed cleavage predominantly at the P2–P1 bond, but also at the P2´–P3´ bond of antithrombin. The papain band in SDS/PAGE progressively disappeared on reaction of the enzyme with increasing amounts of antithrombin, but no band representing a stable antithrombin–papain complex appeared. SDS/PAGE with 125I-labelled papain showed that the disappearance of papain was caused by cleavage of the enzyme into small fragments. These results suggest a mechanism in which papain attacks a peptide bond in the reactive-bond loop of antithrombin adjacent to that involved in serine proteinase inhibition. The reaction proceeds, similarly to that between serpins and serine proteinases, to form an inactive acyl-intermediate complex, although with the substrate pathway dominating in the papain reaction. In this complex, papain is highly susceptible to proteolysis and is degraded by still active papain, which greatly decreases the lifetime of the complex and results in liberation of fragmented, inactive enzyme. This model may have relevance also for the inactivation of physiologically or pathologically important cysteine proteinases by serpins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3