Chemical synthesis and microvascular effects of new nitric oxide donors in humans

Author:

KHAN Faisel1,PEARSON Russell J.2,NEWTON David J.1,BELCH Jill J. F.1,BUTLER Anthony R.2

Affiliation:

1. Vascular Diseases Research Unit, University Department of Medicine, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K.

2. Centre for Biomolecular Sciences, University of St Andrews, Fife KY16 9ST, U.K.

Abstract

Nitric oxide (NO) is produced continuously from the endothelium and plays a pivotal role in the control of vascular tone. Many of the current therapeutic agents that increase blood flow through production of NO have to be taken orally and can produce significant adverse side effects. We now report on some novel NO-donor drugs, based on thiosugars that generate NO spontaneously. From the range of compounds synthesized, D-SNAG (S-nitroso-1-thio-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose) was as effective a vasodilator as any other and, as it was the easiest to synthesize, we undertook a more detailed evaluation to understand the chemistry and mode of action of its vasodilator effect. From the chemical kinetic data, we found that NO release occurred predominantly by thermal decomposition, with a 20-fold increase in decomposition rate between 19 and 37 °C. In the forearm of eight normal male subjects, we found that D-SNAG produced a significant dose-dependent vasodilator effect (P=0.001) with good reproducibility (19%) on repeated testing. We propose that delivery of NO from D-SNAG to the forearm skin microvessels most probably occurs by diffusion across the epidermis. Since such compounds release NO in a non-enzymic manner following topical application, they might produce an attractive therapeutic source of localized NO delivery without inducing systemic side effects.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3