Feedback regulation of vitamin D metabolism by 1,25-dihydroxycholecalciferol

Author:

Colston K W,Evans I M A,Spelsberg T C,MacIntyre I

Abstract

Many factors influence the production of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol) by the kidney. One important factor seems to be feedback regulation by 1,25(OH)2D3 itself. Administration of 1,25(OH)2D3 to vitamin D-deficient chicks abolishes renal 25(OH)D3(25-hydroxycholecalciferol)1-hydroxylase activity and induces the appearance of 25(OH)D3 24-hydroxylase activity. It is likely that these effects are mediated via a nuclear effect, as they are prevented by pretreatment with actinomycin D and alpha-amanitin. Further, 1,25(OH)2D3 has a marked effect on gene transcription in the kidney cell, as assessed by measurement of RNA polymerase activities. RNA polymerase I and II activities are 80-90% inhibited by 12.5nmol of 1,25(OH)2D3 within 30min of subcutaneous administration, indicating an immediate and massive decrease in total gene transcription. By 4h RNA polymerase II activity has returned to control values, but RNA polymerase I activity is markedly enhanced. These results are consistent with the view that regulation of cholecalciferol metabolism in the kidney is associated with an effect of the active metabolite on the kidney nucleus.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3