Comparison of the activities of a multiple inositol polyphosphate phosphatase obtained from several sources: a search for heterogeneity in this enzyme

Author:

Craxton A1,Ali N1,Shears S B1

Affiliation:

1. Inositol Lipid Section, Laboratory of Cellular and Molecular Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A.

Abstract

A multiple inositol polyphosphate phosphatase (formerly known as inositol 1,3,4,5-tetrakisphosphate 3-phosphatase) was purified approx. 22,000-fold from rat liver. The final preparation migrated on SDS/PAGE as a doublet with a mean apparent molecular mass of 47 kDa. Upon size-exclusion chromatography, the enzyme was eluted with an apparent molecular mass of 36 kDa. This enzyme was approximately evenly distributed between the ‘rough’ and ‘smooth’ subfractions of endoplasmic reticulum. There was a 20-fold range of specific activities of this phosphatase in CHAPS-solubilized particulate fractions prepared from the following rat tissues: liver, heart, kidney, testis and brain. However, each of these extracts contained different amounts of endogenous inhibitors of enzyme activity. After removal of these inhibitors by MonoQ anion-exchange chromatography, there was only a 2.5-fold range of specific activities; kidney contained the most and brain contained the least. We prepared and characterized polyclonal antiserum to the hepatic phosphatase, which immunoprecipitated 85-100% of both particulate and soluble phosphatase activities. The antiserum also immunoprecipitated, with equivalent efficacy, CHAPS-solubilized phosphatase activities from heart, kidney, testis, brain and erythrocytes (all prepared from rat). Our data strengthen the case that the function of the mammalian phosphatase is unrelated to the metabolism of Ca(2+)-mobilizing cellular signals. The CHAPS-solubilized phosphatase from turkey erythrocytes was not immunoprecipitated by the polyclonal antiserum, and is therefore an isoform that is structurally distinct, and possibly functionally unique.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3