Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes

Author:

FORGET Marie-Annick1,DESROSIERS Richard R.1,GINGRAS Denis1,BÉLIVEAU Richard1

Affiliation:

1. Laboratoire de médecine moléculaire, Hôpital Sainte-Justine-Université du Québec à Montréal, P.O. Box 8888, Centre-ville station, Montréal, Québec, Canada H3C 3P8

Abstract

The Rho GDP dissociation inhibitor (RhoGDI) regulates the activation—inactivation cycle of Rho small GTPases, such as Cdc42 and RhoA, by extracting them from the membrane. To study the roles of Mg2+, phosphatidylinositol 4,5-bisphosphate (PIP2), ionic strength and phosphorylation on the interactions of RhoGDI with Cdc42 and RhoA, we developed a new, efficient and reliable method to produce prenylated Rho proteins using the yeast Saccharomyces cerevisiae. It has been previously reported that protein kinase A (PKA)-treatment of isolated membranes increased RhoA extraction from membranes by RhoGDI [Lang, Gesbert, Delespine-Carmagnat, Stancou, Pouchelet and Bertoglio (1996) EMBO J. 16, 510–519]. In the present study, we used an in vitro affinity chromatography system to show that phosphorylation of RhoA and Cdc42 significantly increased their interaction with RhoGDI under physiological conditions of ionic strength. This increase was independent of the nucleotide (GDP or guanosine 5′-[γ-thio]triphosphate) loaded on to the Rho proteins, as well as of Mg2+ and PIP2. Moreover, dephosphorylation of rat brain membranes by alkaline phosphatase significantly decreased the extraction of RhoA and Cdc42 by RhoGDI. Subsequent re-phosphorylation by PKA restored the extraction levels, indicating the reversibility of this process. These results clearly demonstrate that the phosphorylation states of Cdc42 and RhoA regulate their interactions with RhoGDI and, consequently, their extraction from rat brain membranes. We therefore suggest that phosphorylation is a mechanism of regulation of Cdc42 and RhoA activity that is independent of GDP—GTP cycling.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3