Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets

Author:

RODRIGUES Claudia O.1,SCOTT David A.1,BAILEY Brian N.1,SOUZA Wanderley DE1,BENCHIMOL Marlene1,MORENO Ben2,URBINA Julio A.12,OLDFIELD Eric2,MORENO Silvia N. J.1

Affiliation:

1. Laboratory of Molecular Parasitology, Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, U.S.A.

2. Departments of Chemistry and Biophysics, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, U.S.A.

Abstract

The addition of PPi promoted the acidification of a subcellular compartment in cell homogenates of Toxoplasma gondii tachyzoites, implying the presence of a proton-translocating pyrophosphatase. The proton gradient was collapsed by addition of the K+/H+ antiporter nigericin, and was also inhibited by addition of the PPi analogue aminomethylenediphosphonate (AMDP). Both proton transport and PPi hydrolysis were dependent upon K+, but Na+ caused partial inhibition of these activities. PPi hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, NaF and to the thiol reagent N-ethylmaleimide. This activity was unaffected by common inhibitors of phosphohydrolases, except that NaO3V (sodium orthovanadate) stimulated the activity by 87%. Immunofluorescence microscopy, using antisera raised against conserved peptide sequences of a plant vacuolar pyrophosphatase, suggested that the pyrophosphatase in T. gondii tachyzoites was located in the plasma membrane and intracellular vacuoles of the parasite. High-field 31P-NMR spectroscopy showed that PPi was more abundant than ATP in tachyzoites. Bisphosphonates (PPi analogues), drugs that are used in the treatment of bone diseases, inhibited proton transport and PPi hydrolysis in tachyzoite homogenates, and also inhibited intracellular proliferation of tachyzoites in tissue culture cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3