Genotoxic effects of the major alkylation damage N7-methylguanine and methyl formamidopyrimidine

Author:

Schmaltz Lillian F.1,Koag Myong-Chul1,Kou Yi1,Zhang Louis1,Lee Seongmin1ORCID

Affiliation:

1. From the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A.

Abstract

Various alkylating agents are known to preferentially modify guanine in DNA, resulting in the formation of N7-alkylguanine (N7-alkylG) and the imidazole ring opened alkyl-formamidopyrimidine (alkyl-FapyG) lesions. Evaluating the mutagenic effects of N7-alkylG has been challenging due to the instability of the positively charged N7-alkylG. To address this issue, we developed a 2′-fluorine-mediated transition-state destabilization approach, which stabilizes N7-alkylG and prevents spontaneous depurination. We also developed a postsynthetic conversion of 2′-F-N7-alkylG DNA into 2′-F-alkyl-FapyG DNA. Using these methods, we incorporated site-specific N7-methylG and methyl-FapyG into pSP189 plasmid and determined their mutagenic properties in bacterial cells using the supF-based colony screening assay. The mutation frequency of N7-methylG was found to be less than 0.5%. Our crystal structure analysis revealed that N7-methylation did not significantly alter base pairing properties, as evidenced by a correct base pairing between 2′-F-N7-methylG and dCTP in Dpo4 polymerase catalytic site. In contrast, the mutation frequency of methyl-FapyG was 6.3%, highlighting the mutagenic nature of this secondary lesion. Interestingly, all mutations arising from methyl-FapyG in the 5′-GGT(methyl-FapyG)G-3′ context were single nucleotide deletions at the 5′-G of the lesion. Overall, our results demonstrate that 2′-fluorination technology is a useful tool for studying the chemically labile N7-alkylG and alkyl-FapyG lesions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3