Quantifying the long-term interplay between photoprotection and repair mechanisms sustaining photosystem II activity

Author:

Saccon Francesco1,Wilson Sam1,Morey-Burrows Felix S.1,Ruban Alexander V.1ORCID

Affiliation:

1. School of Biological and Behavioural Sciences, Queen Mary University of London, London, U.K.

Abstract

The photosystem II reaction centre (RCII) protein subunit D1 is the main target of light-induced damage in the thylakoid membrane. As such, it is constantly replaced with newly synthesised proteins, in a process dubbed the ‘D1 repair cycle’. The mechanism of relief of excitation energy pressure on RCII, non-photochemical quenching (NPQ), is activated to prevent damage. The contribution of the D1 repair cycle and NPQ in preserving the photochemical efficiency of RCII is currently unclear. In this work, we seek to (1) quantify the relative long-term effectiveness of photoprotection offered by NPQ and the D1 repair cycle, and (2) determine the fraction of sustained decrease in RCII activity that is due to long-term protective processes. We found that while under short-term, sunfleck-mimicking illumination, NPQ is substantially more effective in preserving RCII activity than the D1 repair cycle (Plant. Cell Environ.41, 1098–1112, 2018). Under prolonged constant illumination, its contribution is less pronounced, accounting only for up to 30% of RCII protection, while D1 repair assumes a predominant role. Exposure to a wide range of light intensities yields comparable results, highlighting the crucial role of a constant and rapid D1 turnover for the maintenance of RCII efficiency. The interplay between NPQ and D1 repair cycle is crucial to grant complete phototolerance to plants under low and moderate light intensities, and limit damage to photosystem II under high light. Additionally, we disentangled and quantified the contribution of a slowly reversible NPQ component that does not impair RCII activity, and is therefore protective.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3