Deafness-related protein PDZD7 forms complex with the C-terminal tail of FCHSD2

Author:

Wang Huang1,Zhao Dange1,Du Haibo2,Zhai Xiaoyan2,Wu Shaoxuan1,Lin Lin1,Xu Zhigang23,Lu Qing1456ORCID

Affiliation:

1. 1Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China

2. 2Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China

3. 3Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China

4. 4Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

5. 5Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China

6. 6Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China

Abstract

In cochlea, deafness-related protein PDZD7 is an indispensable component of the ankle link complex, which is critical for the maturation of inner-ear hair cell for sound perception. Ankle links, connecting the different rows of cochlear stereocilia, are essential for the staircase-like development of stereocilia. However, the molecular mechanism of how PDZD7 governs stereociliary development remains unknown. Here, we reported a novel PDZD7-binding partner, FCHSD2, identified by yeast two-hybrid screening. FCHSD2 was reported to be expressed in hair cell, where it co-operated with CDC42 and N-WASP to regulate the formation of cell protrusion. The association between FCHSD2 and PDZD7 was further confirmed in COS-7 cells. More importantly, we solved the complex structure of FCHSD2 tail with PDZD7 PDZ3 domain at 2.0 Å resolution. The crystal structure shows that PDZD7 PDZ3 adopts a typical PDZ domain topology, comprising five β strands and two α helixes. The PDZ-binding motif of FCHSD2 tail stretches through the αB/βB groove of PDZD7 PDZ3. Our study not only uncovers the interaction between FCHSD2 tail and PDZD7 PDZ3 at the atomic level, but also provides clues of connecting the ankle link complex with cytoskeleton dynamics for exploiting the molecular mechanism of stereociliary development.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3