Synthesis, biochemical characterization and in silico investigation of 3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid derivatives: dual action mode inhibitors of urease and virulent bacterial stains

Author:

Irshad Sajid1,Ahmad Saeed1,Khan Shafi Ullah2,Khan Mohsin Abbas1,Ejaz Syeda Abida1ORCID,Rao Huma1,Khurshid Umair1,Ahmed Aftab1,Shahzad Nadeem1,Al-kahtani Hamad M.3,Waheed Affan1,Wani Tanveer A.3,Aborode Abdullahi Tunde4

Affiliation:

1. 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

2. 2Product and Process Innovation Department, Qarshi Brands Pvt. Ltd., Hattar Industrial Estate-22610, Haripur, KPK Pakistan

3. 3Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia

4. 4Department of Chemistry, Mississippi State University, Starkville, U.S.A.

Abstract

In the present work, we reported the synthesis of Schiff bases from 4-phenoxy-5-sulfamoylbenzoic acid motif. The reaction was carried out by substitution of different aldehyde and ketones at sulfamoyl group of sulfamoylbenzoic acid. The generated substituted products (4a–4i) possessed potent structure activity relationship and exhibited drug like properties. The structures of synthesized compounds were characterized on the basis of FT-IR, 1H NMR, 13C NMR and mass spectroscopic data. The effects of synthesized products were investigated on urease enzyme through anti-urease enzyme inhibition assay (Weather burn method). These compounds were further evaluated for antibacterial potential. The Rationale behind the assessment of antibacterial activity was to investigate the synthesized compound's dual mode action against urease and virulent bacterial strains in order to develop a lead candidate for the treatment of GIT diseases such as gastric and peptic ulcers, as well as hepatic encephalopathy. The synthesized derivatives have outstanding anti-urease and antibacterial action, as is evident from in vitro and in silico studies. As a result, these compounds (3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid; 4a-4i) might be explored further as a potential lead for the development of potent inhibitors in the future.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3