The uncharacterized Pseudomonas aeruginosa PA4189 is a novel and efficient aminoacetaldehyde dehydrogenase

Author:

Fernández-Silva Arline1,Juárez-Vázquez Ana L.1,González-Segura Lilian1,Juárez-Díaz Javier Andrés2,Muñoz-Clares Rosario A.1ORCID

Affiliation:

1. 1Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico

2. 2Departamento de Biología Comparada, Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico

Abstract

Neither the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene nor its ortholog proteins have been biochemically or structurally characterized and their physiological function is unknown. We cloned the PA4189 gene, obtained the PA4189 recombinant protein, and studied its structure–function relationships. PA4189 is an NAD+-dependent aminoaldehyde dehydrogenase highly efficient with protonated aminoacetaldehyde and 3-aminopropionaldehyde, which are much more preferred to the non-protonated species as indicated by pH studies. Based on the higher activity with aminoacetaldehyde than with 3-aminopropionaldehyde, we propose that aminoacetaldehyde might be the PA4189 physiological substrate. Even though at the physiological pH of P. aeruginosa cells the non-protonated aminoacetaldehyde species will be predominant, and despite the competition of these species with the protonated ones, PA4189 would very efficiently oxidize ACTAL in vivo, producing glycine. To our knowledge, PA4189 is the first reported enzyme that might metabolize ACTAL, which is considered a dead-end metabolite because its consuming reactions are unknown. The PA4189 crystal structure reported here suggested that the charge and size of the active-site residue Glu457, which narrows the aldehyde-entrance tunnel, greatly define the specificity for small positively charged aldehydes, as confirmed by the kinetics of the E457G and E457Q variants. Glu457 and the residues that determine Glu457 conformation inside the active site are conserved in the PA4189 orthologs, which we only found in proteobacteria species. Also is conserved the PA4189 genomic neighborhood, which suggests that PA4189 participates in an uncharacterized metabolic pathway. Our results open the door to future efforts to characterize this pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3