OAT2 catalyses efflux of glutamate and uptake of orotic acid

Author:

Fork Christian1,Bauer Tim1,Golz Stefan2,Geerts Andreas2,Weiland Jessica3,Del Turco Domenico3,Schömig Edgar1,Gründemann Dirk1

Affiliation:

1. Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany

2. Global Drug Discovery: Target Discovery, Bayer Healthcare AG, 42096 Wuppertal, Germany

3. Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany

Abstract

OAT (organic anion transporter) 2 [human gene symbol SLC22A7 (SLC is solute carrier)] is a member of the SLC22 family of transport proteins. In the rat, the principal site of expression of OAT2 is the sinusoidal membrane domain of hepatocytes. The particular physiological function of OAT2 in liver has been unresolved so far. In the present paper, we have used the strategy of LC (liquid chromatography)–MS difference shading to search for specific and cross-species substrates of OAT2. Heterologous expression of human and rat OAT2 in HEK (human embryonic kidney)-293 cells stimulated accumulation of the zwitterion trigonelline; subsequently, orotic acid was identified as an excellent and specific substrate of OAT2 from the rat (clearance=106 μl·min−1·mg of protein−1) and human (46 μl·min−1·mg of protein−1). The force driving uptake of orotic acid was identified as glutamate antiport. Efficient transport of glutamate by OAT2 was directly demonstrated by uptake of [3H]glutamate. However, because of high intracellular glutamate, OAT2 operates as glutamate efflux transporter. Thus expression of OAT2 markedly increased the release of glutamate (measured by LC-MS) from cells, even without extracellular exchange substrate. Orotic acid strongly trans-stimulated efflux of glutamate. We thus propose that OAT2 physiologically functions as glutamate efflux transporter. OAT2 mRNA was detected, after laser capture microdissection of rat liver slices, equally in periportal and pericentral regions; previous reports of hepatic release of glutamate into blood can now be explained by OAT2 activity. A specific OAT2 inhibitor could, by lowering plasma glutamate and thus promoting brain-to-blood efflux of glutamate, alleviate glutamate exotoxicity in acute brain conditions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3