Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study

Author:

VITTORELLI Anne1,GAUTHIER Catherine1,MICHOUDET Christian1,MARTIN Guy1,BAVEREL Gabriel1

Affiliation:

1. Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France

Abstract

The metabolism of glutamine, a physiological substrate of the human kidney, plays a major role in systemic acid–base homoeostasis. Not only because of the limited availability of human renal tissue but also in part due to the lack of adequate cellular models, the mechanisms regulating the renal metabolism of this amino acid in humans have been poorly characterized. Therefore given the renewed interest in their use, human precision-cut renal cortical slices were incubated in Krebs–Henseleit medium (118 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO4·7H2O, 24.9 mM NaHCO3 and 2.5 mM CaCl2·2H2O) with 2 mM unlabelled or 13C-labelled glutamine residues. After incubation, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. Glutamate accumulation tended to plateau but glutamine removal and ammonia, alanine and lactate production as well as flux through GLDH (glutamate dehydrogenase) increased to various extents with time for up to 4 h of incubation indicating the metabolic viability of the slices. Valproate, a stimulator of renal glutamine metabolism, markedly and in a dose-dependent fashion increased ammonia production. With [3-13C]glutamine as a substrate, and in the absence and presence of valproate, [13C]glutamate, [13C]alanine and [13C]lactate accounted for 81 and 96%, 34 and 63%, 30 and 46% of the glutamate, alanine and lactate accumulations measured enzymatically respectively. The slices also metabolized glutamine and retained their reactivity to valproate during incubations lasting for up to 48 h. These results demonstrate that, although endogenous metabolism substantially operates in the presence of glutamine, human precision-cut renal cortical slices are metabolically viable and strongly respond to the ammoniagenic effect of valproate. Thus, this experimental model is suitable for metabolic and pharmaco-toxicological studies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference38 articles.

1. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride;Owen;J. Clin. Invest.,1963

2. Renal substrate exchange in human diabetes mellitus;Wahren;Diabetes,1975

3. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency;Tizianello;J. Clin. Invest.,1980

4. Renal oxygen consumption, thermogenesis, and amino acid utilization during an infusion of amino acids in man;Brundin;Am. J. Physiol.,1994

5. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism;Meyer;Am. J. Physiol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3