Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulfuricum

Author:

Saha B C1,Mathupala S P2,Zeikus J G123

Affiliation:

1. Michigan Biotechnology Institute, Lansing, MI 48909

2. Departments of Biochemistry

3. Microbiology, Michigan State University, East Lansing, MI 48824, U.S.A.

Abstract

Clostridium thermohydrosulfuricum mutant Z 21-109 produced intracellular thermostable pullulanase and glucoamylase activities. The glucoamylase activity was inactivated by treating C. thermohydrosulfuricum cells with 10% (v/v) propan-1-ol at 85 degrees C in the presence of 5 mM-CaCl2. Pullulanase activity was selectively solubilized from cells by treatment with detergent and lipase. The solubilized pullulanase was purified by treatment with streptomycin sulphate and (NH4)2SO4 and by DEAE-Sephacel, octyl-Sepharose and pullulan-Sepharose chromatography. Pullulanase was purified 3511-fold and displayed homogeneity on SDS/polyacrylamide-gel electrophoresis. The pullulanase was a monomeric glycoprotein with an apparent Mr of about 136,500, and it displayed a pI of 5.9. The enzyme was enriched in both acidic and hydrophobic amino acids. The purified pullulanase was stable and optimally active at 90 degrees C. The optimum pH for activity and pH-stability ranges were 5.0-5.5 and 3.0-5.0 respectively. The enzyme was inhibited by cyclodextrins, EDTA and N-bromosuccinimide, but not by p-chloromercuribenzoate and acarbose. The pullulanase displayed a relative substrate specificity for hydrolysis of pullulan (100%) versus 75% for glycogen and 50% for soluble starch. The apparent Km, Vmax. and Kcat. values for enzyme activity on pullulan at 60 degrees C were 0.675 mg/ml, 122.5 mumol of reducing sugar formed/min per mg of protein and 16,240 min-1 respectively. The novel properties of this extremely thermostable pullulanase are discussed in relation to other purified starch-debranching enzymes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3