Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function

Author:

COFFER J. Paul1,GEIJSEN Niels1,M'RABET Laura2,SCHWEIZER C. Rene1,MAIKOE Tjander1,RAAIJMAKERS A. M. Jan1,LAMMERS Jan-Willem J.1,KOENDERMAN Leo1

Affiliation:

1. Department of Pulmonary Diseases, G03.550, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

2. Laboratory for Physiological Chemistry, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands

Abstract

Although it is known that many stimuli can activate mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinases (PI3K) in human neutrophils, little is known concerning either the mechanisms or function of this activation. We have utilized a selective inhibitor of MAPK kinase (MEK), PD098059, and two inhibitors of PI3K, wortmannin and LY294002, to investigate the roles of these kinases in the regulation of neutrophil effector functions. Granulocyte/macrophage colony-stimulating factor, platelet-activating factor (PAF) and N-formylmethionyl-leucyl-phenylalanine are capable of activating both p44ERK1 and p42ERK2 MAPKs and phosphotyrosine-associated PI3K in human neutrophils. The activation of extracellular signal-related protein kinases (ERKs) is correlated with the activation of p21ras by both tyrosine kinase and G-protein-coupled receptors as measured by a novel assay for GTP loading. Wortmannin and LY294002 inhibit, to various degrees, superoxide generation, neutrophil migration and PAF release. Incubation with PD098059, however, inhibits only the PAF release stimulated by serum-treated zymosan. This demonstrates that, while neither MEK nor ERK kinases are involved in the activation of respiratory burst or neutrophil migration, inhibition of PAF release suggests a potential role in the activation of cytosolic phospholipase A2. PI3K isoforms, however, seem to have a much wider role in regulating neutrophil functioning.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3