Presenilin function: connections to Alzheimer's disease and signal transduction

Author:

Fraser Paul E.12,Yu Gang1,Lévesque Lyne1,Nishimura Masaki1,Yang Dun-Sheng1,Mount Howard T.J.13,Westaway David14,St George-Hyslop Peter H.13

Affiliation:

1. Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada

2. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 3H2, Canada

3. Department of Medicine (Neurology), University of Toronto, Toronto, Ontario M5S 3H2, Canada

4. Department of Laboratory of Medicine and Pathobiology,Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2, Canada

Abstract

Missense mutations in presenilin 1 (PS1) and presenilin 2 (PS2) are associated with early-onset familial Alzheimer's disease which displays an accelerated deposition of amyloid plaques and neurofibrillary tangles. Presenilins are multi-spanning transmembrane proteins which localize primarily to the endoplasmic reticulum and the Golgi compartments. We have previously demonstrated that PS1 exists as a high-molecular-mass complex that is likely to contain several functional ligands. Potential binding proteins were screened by the yeast two-hybrid system using the cytoplasmically orientated PS1 loop domain which was shown to interact strongly with members of the armadillo family of proteins, including ϐ-catenin, p0071 and a novel neuron-specific plakophilin-related armadillo protein (NPRAP). Armadillo proteins can have dual functions that encompass the stabilization of cellular junctions/synapses and the mediation of signal transduction pathways. Our observations suggest that PS1 may contribute to both aspects of armadillo-related pathways involving neurite outgrowth and nuclear translocation of ϐ-catenin upon activation of the wingless (Wnt) pathway. Alzheimer's disease (AD)-related presenilin mutations exhibit a dominant gain of aberrant function resulting in the prevention of ϐ-catenin translocation following Wnt signalling. These findings indicate a functional role for PS1 in signalling and suggest that mistrafficking of selected presenilin ligands may be a potential mechanism in the genesis of AD.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3